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Abstract. Recent advances in technologies for smart devices are having a 

significant impact in IoT (Internet of Things) scenarios as, e.g., intelligent 

buildings. Sensor/actuator networks use small and non-intrusive devices 

consuming reasonable amount of energy and offering improved performance. 

On the other hand, highly specialized devices providing high reliability are 

interconnected by dedicated network infrastructure because of safety reasons. 

This article discusses early stage of the implementation of an innovative 

hierarchical network infrastructure for connecting IoT objects and services 

where the location of the nodes is closely related to the structure of the 

environment as it occurs in intelligent buildings/enterprises. 

1 Introduction 

Networks consisting of specialized sensors and actuators play a crucial role in cur-

rently under development intelligent buildings. There are two observable areas where 

the networked IoT objects are successfully used: energy saving and security. Both 

require sensors (i.e., passive infra-red, fume detectors, etc.) and actuators (i.e. light 

switches, window actuators, etc.) located in selected areas of a building. Their loca-

tion is strictly dependent on the structure of the building and connections between 

them, which creates a hierarchical network that can be modeled as a tree topology, as 

shown in Fig. 1. 

This article discusses implementation details together with test results of the de-

ployed hierarchical network for connecting IoT objects where node location may be 

defined by the same environment structure, as it occurs in the case of intelligent build-

ings with fix nodes and fix sensors/actuators. The presented implementation is based 

on the ID Layer concept that we developed and presented in [1]. The discussed net-

work node has been mostly developed in Linux kernel module and extends the solu-

tion proposed in Flexible Packet Forwarding (FPF) method [2]. 



 

Fig. 1. Example of hierarchical network for data transmission in intelligent building 

2 Context 

Until recently, sensor networks were mainly the hermetic solutions based on spe-

cialized devices, dedicated network and proprietary protocols developed by suppliers. 

Over time, popular solutions have become factory standards widely used in the indus-

try control [3] (e.g. Controller Area Network), but also in other areas [4]. For exam-

ple, more and more smart devices have been equipped with standard wired or wireless 

Ethernet interfaces [5], thus they may share the same network infrastructure as other 

applications. Therefore, it is desirable to implement such nodes using layer-2 network 

that is backwards compatible with Ethernet. 

In order to develop the location-oriented network topology, the key idea is to em-

bed the physical network connectivity structure into a (logical) topological space (e.g. 

introducing a metric or Euclidean space). This approach was presented among others 

in VIRO (Virtual Id ROuting) [6] to illustrate how the novel topological perspective 

enables the development of the scalable resilient network routing algorithms. Another 

example of this approach is SEATTLE [7], which introduces OSPF-style shortest 

routing in layer 2 for inter-connecting objects and Ethernet switches. Such solutions 

are aimed at reducing network-wide flooding – often typical for Ethernet switches 

needed to forward packets whose locations are yet to be learned, especially in the case 

of wide layer-2 networks, which encompass small LAN networks. 

Other approaches aimed at replacing the current global IP address space by flat 

identifiers, have been adopted by VRR [8], UIP [9] and ROFL [10]. They make use of 

several methods of hashed id assignment (mostly based on DHT), which produces an 

id-space completely independent of the underlying network topology. As a result, 

these methods perform routing based on logical distance to the id of the destination.  

Real Time Control Systems consider not only topological addressing, but also 

transmission parameters such as packet delay and predictability of the response time. 

In such systems, the transmission is moderated by a controller/supervisor, which 

grants permissions to specific devices (i.e. sensors/actuators) by sending appropriate 

tokens. The order of polling is fixed according to the address table (with flat structure) 

stored in the controller and can have nothing to do with the physical placement of 

devices. The device with the next highest address is the logical neighbor, even when 



they can be located at the extreme ends of a physical network. Example solutions 

encompass, among others, Profibus [11] and DeviceNet [12].  

In turn, the ID Layer concept [1] assumes hierarchical addressing scheme for the 

same purpose, i.e. each level of address hierarchy is represented by one address seg-

ment. Forwarding process is based on analysis of particular address segments, howev-

er, this approach does not require physical node on each level of hierarchy since for-

warding functionality may be performed also by virtualized nodes.  

3 Implementation of ID Layer node 

The main objective of the implementation of the ID_Layer node is to develop the 

ID layer in the network level instead of building an overlay network. The architecture 

proposed in [1] has a hierarchical structure, in which each node has a human-readable 

identifier related to its location. These nodes, called further as ID_Layer nodes, in-

clude connected objects (sensors/actuators) and also address the services offered by 

the objects. It is assumed that the name of each node, object and service is formed as 

an 8-ASCII extended character (word). The naming scheme uses hierarchical ID-

based addressing scheme, which is created and managed in conjunction with the loca-

tion of the IoT object. The human-readable names of nodes, object and services are 

also used for packet routing across the network. 

All included functional blocks of ID-Layer node were created as software modules 

in user and kernel space of Linux operating system. Fig. 2 shows main building 

blocks of ID_Layer node and functional dependencies between them. The main mod-

ules are: (1) Forwarding Administration Tool, which is the configuration module. 

This module gives the possibility for an administrator to configure the Forwarding 

Table and to assign a node name; (2) Forwarding Module, which is responsible for 

sending a frame to the required node, regardless of whether the frame is a data frame, 

a registration message or a resolution message. More detailed definition of different 

types of frames is given in [1]. This module communicates with Registration Module 

(registration process), Resolution Module (resolution process) and the Forwarding 

Administration Tool during the initial node configuration procedure; (3) Registration 

Module, which is responsible for the registration of new objects/services in the node, 

to which the object/service are connected, while the (4) Resolution Module allows to 

obtain  the information about all the objects/services registered in the specified node.  

The implemented ID-Layer node performs functionalities of forwarding, registra-

tion of objects/services and resolution of services. 

For forwarding frames, the ID address is included in the header of the ID frame to-

gether with the information about header length. Moreover, each node has assigned  

its own address by the administrator [1]. This allows to perform forwarding actions in 

the node only by comparing the ID with the address of the node without the necessity 

of running routing protocols.  

Registration is the process by which objects (and basic/composed services offered 

by them) inform about the own characteristics to the closest network node. The net-



work nodes will maintain information about the connected objects and offered ser-

vices.  

At last, resolution is in charge of discovering the services offered by the objects 

and presenting them to the users (IoT applications).  

 

 

Fig. 2. General architecture of the ID_Layer node 

Details of the functional processes performed by the modules are given in the next 

sub-sections, starting from the configuration of the ID-Layer node. 

3.1 Configuration of ID_Layer node 

The Forwarding Administration Tool located at the user space communicates with 

the Forwarding Module (kernel space) for basic node configuration in the following 

areas: Forwarding Table configuration and node name configuration.  

The Forwarding Table configuration is performed by adding new entries in an ap-

propriate data structure maintained by the ID_Layer node in the kernel space. The 

following sample command is performed to configure one entry: 

./cf_tool add_ethernet room001 eth4 aa:11:b0:c0:00:01 

where: 

room001 – name of the next node 

eth4 – name of the interface through which the frame will be sent 

aa:11:b0:c0:00:01 – destination MAC address  

In order to perform a complete configuration of the node, it is necessary to assign a 

node name. It is performed by issuing the following command: 

./cf_tool add_name  floor111.build111.room111 

3.2 Forwarding process  

The data forwarding process is performed by the Forwarding Module using the 

Forwarding Table, which is a data structure that stores necessary information about 

routes to the adjacent nodes. The forwarding process applies only to data frames and 

resolution messages, in which the destination address means the domain name of the 

node, while the registration messages, for which the fixed destination address 

(.locathst) is established, are forwarded without querying the Forwarding Table.  



Data and resolution frames contain similar formats, as far as addressing concerns 

(ID frame header is presented in Fig. 3). The format of the ID frame header contains 

destination and source addresses as well as Message info (more information about 

data format can be found in [1]). Both, the source and the destination addresses, con-

tain different levels (corresponding to different hierarchical levels) separated by dots 

(e.g., build001. floor001.room0001). Each level contains 8 bytes. In the 2-byte mes-

sage info field, the first four bits define the message type, the next bit identifies 

whether the message is multicast or unicast. Finally, 11 bits indicate the length of the 

message in bytes.  

 

 

Fig. 3. Exemplary ID_Layer frame 

When a frame arrives to the node, this compares the destination address with the 

entries of the Forwarding Table and forwards the frame, following the rule inserted 

into the Forwarding Table. The forwarding operation is preceded by a validation of 

the destination address. The aim of this step is to check whether the appropriate part 

of the destination address contained in the frame is consistent with the node name 

assigned by the administrator. For example, a frame with address floor001.room0001 

should not arrive from the parent node interface (interface where the parent node is 

connected) to a node with address .floor002, but it may arrive from the child node 

interface (this case would be the case when the frame should be directed to the desti-

nation through the parent node). Each level of the destination address is compared 

with the corresponding level of the own node name set previously by the administra-

tor. In the case of a failed name validation, the frame is forwarded to the node at a 

higher level of hierarchy (parent node). In the case of positive validation, the frame is 

forwarded according to the forwarding rule set in the Forwarding Table. From the 

implementation’s point of view , there are two options for performing such a valida-

tion. The first option consists of converting the destination address of the frame as 

well as the address of the node to integer type and comparing the integers. In the sec-

ond option, both the destination address and the own node name are stored and com-

pared as character variables. It is supposed that the first option is quicker since the 

number of comparisons is proportional to the number of levels, whereas the second 

option requires a number of comparisons proportional to the number of characters 

(which is equal to 8 times the number of levels). In the test experiments presented in 

the next section, we will compare the performance of the two options. 

If the validation process finishes positively, then the forwarding process goes 

ahead by searching the relevant part of the domain name that will be used during the 

forwarding procedure. The information about the own node name allows the algo-

rithm to find the relevant part of the name. If the node name is floor001.build001 and 

the destination address set in the frame header is floor001.build001.room0001, then 

the forwarding will be based on the last part of the address (room0001). 



The next step of the algorithm is to find an appropriate entry in the Forwarding Ta-

ble for the relevant part of the domain name.  

The Forwarding Table consists of entries with 3 fields: destination_MAC, 

dev_name and next_node, as shown in Table 1.  

Table 1. Data structure of Forwarding Table entries  

Name of variable Type of variable Description 

destination_MAC uint8_t [48] Destination MAC address of the node 

interface to which the frame is sent 

dev_name char [5]  Name of the outgoing interface 

next_node char [8] Domain address of the next node 

 

The information about the next_node (destination node address) is used to calculate 

a specific index of the entry in the Forwarding Table. In order to add the appropriate 

entry to the table, the algorithm converts the 8-byte long next_node name to 1-byte 

numerical value according to the following iteration algorithm (1): 

 index = ((37 * index) + ch→name[i]&0xff)  (1) 

where index is the value of the converted next_node (1 byte), i is an iteration variable 

and ch→name[i] is the i-level of the domain node name. 

Then, the find_entry function queries the Forwarding Table about the interface 

connected to the value index. On the basis of the information contained in this entry, 

the frame is sent to the next node.  

Fig. 4 shows the sequence diagram of the forwarding process.  

 

 

Fig. 4. Sequence diagram of the forwarding process 

 

3.3 The registration process  

The registration process illustrated in the sequence diagram presented in Fig. 5 is 

initiated upon the receipt of a specific register message [1] by the Forwarding Mod-

ule. Then, the Forwarding Module reads the appropriate message info field [1] placed 

in the message header and redirects the process to the Registration Module without 

querying the Forwarding Table. In the Registration Module, the function regis-

ter_handle is called. This function maintains main data structure with information 

about  currently registered objects or services (object/service identifier –id and full 



address of the object/service - ObjectAddress). If the data structure does not yet store 

the entry with the demanded id of the object/service, then a new entry is created with 

the data contained in the register message. Finally, the Registration Module passes to 

the Forwarding Module the necessary information used for sending response message 

to the object/service (that sent the register message) in order to confirm the registra-

tion process. 

 

 

Fig. 5. Sequence diagram of the registration process 

3.4 Resolution process 

The resolution process illustrated in the sequence diagram of Fig. 6 is initiated by 

the user (IoT application) in order to retrieve information about registered 

objects/services.  

 

 

Fig. 6. Sequence diagram of the resolution process 

 

For this purpose, the user’s application sends a resolution message, which is 

forwarded in accordance with the forwarding algorithm until the destination node. 

When the message reaches the destination node, the Forwarding Module of this node 

extracts the message info and, based on this information, redirects the process to the 

Resolution Module where the function resolution_handle is executed. In the next step, 

the Resolution Module retrieves information about registered objects/services of the 

queried node from the Register Module (get_object function) and retrieves 



information about all child nodes from the Forwarding Table (get_child function), 

which enables the identification of the objects/services registered in the nodes of 

lower hierarchy. In the final phase of the resolution_handle function, the Resolution 

Module sends the appropriate information to the Forwarding Module. The latter 

builds a resolution response message, in which the source and the destination 

addresses are interchanged. Moreover, information about registered objects/services 

and names of the child nodes are placed into the information field of the resolution 

response message. Finally, these messages are sequentially forwarded back to the 

requester. 

4 Performance tests of forwarding process 

Even if the advantages of ID addressing and ID Layer forwarding are numerous for 

IoT applications [1], the proposed solution risks fail in the case when the implementa-

tion does not fulfill the requirements of performance necessary for forwarding a large 

amount of packets. The aim of the presented here performance tests  is to show that 

the deployed solution is efficient enough to be used in IoT scenarios. More precisely, 

we will demonstrate that the ID-Layer node performance is comparable to IP router 

implemented on Linux OS (software development). Moreover, the test deal with 

scalability issues show the behavior of the ID_Layer node for increasing up to 8 num-

ber of the domain levels, i.e., for increasing hierarchy atomization.  

The testbed /consists of one System Under Test (SUT) and one tester. The SUT is 

the ID_Layer node installed on HP ProLiant DL360G6 server, which runs Linux Op-

erating System. The tester is the Spirent TestCenter (equipped with CM-1G-D4 card). 

The tester and the SUT are connected by two 1 Gbps Ethernet links in ring topology, 

as proposed in the benchmarking for testing network interconnect devices presented 

in RFC 2544 [13]. We performed tests for the following frame size: 96B, 112B, 

128B, 160B, 256B, 384B, 512B, 1024B and 1518B, and the stream was the maximum 

allowed by the interfaces, i.e., 1 Gbps. In these conditions, we measured the frame 

losses observed in the SUT due to overload of the server. 

The results presented below shows the Frame Loss Ratio for different frame sizes 

and increasing number of domains. First of all, let us remark that the software IP rout-

er implemented on Linux OS was installed in the same hardware and the Frame Loss 

Ratio of the IP router was, at least, 20 times higher than the ID_Layer node (for all 

frame sizes), even in scenarios with 8 domain levels. Note that the IP router perfor-

mance is not affected by level complexity because of the same nature of IP addresses. 

For clarity purposes, we did not present the values of Frame Loss Ratio in the figure.  

As one of the major features of the forwarding process is the validation of the des-

tination address in the ID_Layer frame, we compared two approaches for implemen-

tation,  which is described above. As stated above, this address is composed of the 

levels of the domain name separated by dots. The introduction of this functionality 

results in the need for additional computational effort caused by parsing the destina-

tion address.  

 



 

Fig. 7. Test results for frames 96B, 112B, 128B frames (both options of forwarder implementa-

tion):  

a) name validation with conversion of variables. b) name validation without conversion of 

variables (0 number of domain levels means forwarding without validation name) 

The results revealed  that the increasing number of levels of the domain name in 

the destination address causes a higher Frame Loss Ratio for both options of the 

ID_Layer forwarder (i.e., name validation with and without conversion of variables). 

The increase of Frame Loss Ratio is approximately linear for each test scenario. In 

addition to this, it can be noted that, for the same tests (frames with the same number 

of domain levels), there is no significant difference between the values of Frame Loss 

Ratio for both implementations of the forwarder. . 

In Fig. 7, we presented results only for frames not bigger than 128B, but the tests 

were performed for other frame sizes according to the test assumptions. The results of 

the other tests confirmed that the forwarder transmits frames with bit rate equal to the 

maximum link bitrate - 1Gb/s for frames larger than 160 Bytes independently of the 

test scenario (number of domain levels). For the frame size equal to 160B, the Frame 

Loss Ratio parameter does not exceed the level of 10-6. This means that the main limi-

tation of the forwarder performance is the performance of network interface as frame 

loss occurs only for very small frames. 

It can be concluded that the size of the address contained in the frame header has a 

small impact on the value of the Frame Loss Ratio parameter and, on the other hand, 

the performance of the ID_Layer node is satisfactory (at the same level as software IP 

router). 

5 Conclusions 

More and more smart devices used in current developments are equipped with 

Ethernet interfaces, which allow sharing the same network infrastructure between 

different applications. This approach allows to reduce implementation costs and does 

not adversely affect the functionality of the intelligent building solutions.  

The based on the ID layer concept implementation was developed over the Linux 

operating system. It engages mainly kernel resources to improve effectiveness of the 

solution.  



We conducted performance tests of the prototype aimed at checking the effective-

ness of the implemented solution for different lengths of the address field. In result, 

we calculated the limit performance of the node, which could be located on different 

levels in hierarchy tree. The test results presented above confirm the usefulness of 

kernel based approach for ID layer implementation. In particular, it is able to serve 

high frame rates and can be implemented as additional functionality of Linux based 

network nodes. 

Further works will cover, besides the completion of routing functionality according 

to assumptions in [1], development of system for centralized domain names manage-

ment. 
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